

LabOSat as a versatile payload for small satellites: first 100 days in LEO orbit

Gabriel A. Sanca, M. Barella, F. Gómez Marlasca, G. Rodriguez, D. Martelliti, L. Patrone, P. Levy and F. Golmar **ECyT-UNSAM,** *CMNB-INTI, CAC-CNEA, CONICET* 1st IAA Latin American Symposium on Small Satellites, 7th-10th March 2017, Buenos Aires

UNSAM – Campus Miguelete

Who we are?

Comisión Nacional de Energía Atómica

Brackground: MeMOSat-01

- CubeSat like platform
- Designed to test ReRAM devices
- Since June 2014, operating inside BugSat-01 SATELLOGIC

Introduction to LabOSat

- LabOSat: instrumentation payload in LEO
- Nusat missions, SATELLOGIC

Platform description

- Hardware
 - Tested parts
 - Inherit and improved topologies from MeMOSat-01
- Firmware
 - Three main tasks:
 - Communicate with satellite main computer
 - Control the experiments
 - Process data acquired during the experiments
 - Standard test routine (all on board experiments)

Dosimetry

We use same topology as in MeMOSat IAA-LA-06-05 Wensday 17.40

Devices Under Test (DUTs)

- xFET subsystem
 - TFT devices
 - 3-terminal
 - I-V curves

Devices Under Test (DUTs)

- MeMO subsystem
 - ReRAM devices
 - SMUs
 - 2-terminal
 - I-V curves
 - Endurance tests

Results

Operating conditions

DUTs experiments

TFT devices

From ID vs VGS curve

DUTs experiments

ReRAM devices

Closing remarks

- LabOSat is working in LEO for more than 160 days. Regarding performance, all subsystems are working as expected.
- On Earth calibration, supply voltage and temperature measurements in orbit allow us to carry out **corrections to improve accuracy** in DUTs experiments.
- TID measurements are still inconclusive, but are consistent with he expected results, signaling very lows radiation levels.
- TFT devices continue to operate correctly. No changes in threshold voltage were observed. This analysis is still unfinished although the low level of absorbed dose.
- ReRAM devices still exhibit hysteresis. Variations of I-V curves are due to low endurance instead
 of absorbed dose.

- LabOSat on board on Ñusat by Satellogic is a versatile platform capable of measuring both custom and commercial devices for validation at LEO.
- LabOSat is envisaged as an efficient and reliable platform for performing a variety of experiments at LEO!

Contact gsanca@unsam.edu.ar

labosat.unsam.edu.ar